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Geometry of the problem

unit problem representing the
geometry during neck formation
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SINTERING
Initial point contact

D

late stage, neck growth
          long time

1.26 D

infinite time

Sintering model with the development
of the particle bond during sintering

Microstructural scale
In boundary, important atomic 
motion



MACROSCOPIC DESCRIPTION

Principal mechanisms

Evaporation –condensation
Superficial diffusion

Without shrinkage

With shrinkage

•Formation of pores
•Mechanical resistance
•Chemical reactions
•Dimensional variation
contingent on temperature

Principal mechanisms

Volume diffusion
flows (viscous and plastic)



PHYSICAL CHEMISTRY ASPECT

DRIVING ENERGIES:

Surface Energy : •Surface tension dSdW /=γ

Energy linked to the presence
of physical defects      :

•Proximity of curved surfaces
•In the crystalline network, there 
exists a concentration of C de lacuna 
expressed as flows( thermodynamic  
statistics):

)/exp(Co kTEN
n f≈=

Energy linked to the 
presence of pressure   :

• If the interface is curved, the pressure of the 
vapor, in equilibrium with the solid, changes
depending on the curvature of the surface



SINTERING MECHANISMS IN SOLID PHASE

1-TANGENT SPHERES 2- SECANT SPHERES 

1. Evaporation –condensation
2. Superficial diffusion
3. Volume diffusion 1. Viscous flow

2. Volume diffusion
3. Intergranular diffusion
4. Microcreep



1.1-TANGENT SPHERES: Evaporation - condensation

• That a transfer of atoms 
will be established, by the 
gaseous phase from
the sphere’s surface toward
the lateral surface of the bridge.
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1.2-TANGENT SPHERES : superficial diffusion
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•In proximity to the bridge’s 
surface, there exists and 
excess of lacunas; however, 
Nearby the sphere’s surface –
far from the threshold–
there exists a defect of lacunas.
•The extra lacunas will diffuse.
If a flux of lacunas is 

established, there will be 
an equivalent flux of atoms
in the opposite direction which 
will therefore contribute to 
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1.3-TANGENT SPHERES : Volume diffusion
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• Based on the presence of an
excess of lacunas neighboring the 
bridge’s surface, and of a defect of 
lacunas nearby the sphere surfaces
far from the bridge.
• This diffusion of lacunas (and of
atoms) is speculated to operate on
the volume and no longer 
on the surface
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2.1-SECANT SPHERES : Viscous flow
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• The formation of a linking zone between
spheres carried out by viscous flow of 
Newtonian-type material

• the displacement of atoms carried out
under the influence of a cut which is
proportional to the gradient of speeds
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2.2-SECANT SPHERES : Volume diffusion

• Similar to those previously mentioned.
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• The model considered a variation of the distance between the 
centers of the spheres



2.3-SECANT SPHERES : Intergranular diffusion

• The experimental observations show
that in the majority of cases, it forms
a neck within the linked zone, 
being AA’.

• Les lacunas, finding themselves in excess
neighboring the concave surface of the 
bridge, will be able to diffuse toward 
this grain joint, instead of spreading 
to surfaces with a larger radius of 
curvature meaning the surfaces 
of the two spheres.
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2.4- SECANT SPHERES : Microcreep mechanism
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material occurring at a given 
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of a constant.

• Volume subject to the strain of
compression σ1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≅

21

11
γγγσ



Cases:

external load

external load
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Sintering of a homogeneus body under uniaxial loading (tension or compression)

• Sinter forging
• Plastic flow and sintering

under the action of external
forces

• overall compression
• uniaxial loading
• torsion

Free sintering 
• free sintering of linear – viscous porous material

• power – law creep (nonlinearity of the constitutive
properties)



Evolution des solides traités (contenant des polluants)

Illustration of the sintering phenomenon:

Reduction of the specific surface area
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Effect of Calcination on HAp properties

Other physical changes

Chemical changes

Amorphous
to

cristalline structure
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Calculation of properties during the sintering

VV
mm

V
m

0

0
∆−
∆−

==ρ

3
0

2
0

0

)
100

dilatation%1(hR

)
100

TG%1(m

+π

−
=ρ

Density

theo
1

ρ
ρ

−=εPorosity:

600

700

800

900

1000

1100

1200

1300

1400

0 200 400 600 800 1000 1200
Temperature (°C)

de
ns

ity
 (k

g/
m

3 ),
po

ro
si

ty
 %

*1
0

-22

-18

-14

-10

-6

-2

2

w
ei

gh
t l

os
s 

%
,

sh
rin

ka
ge

 %

density
porosity
shrinkage %
weight loss %

L0
L

Force

-30

-25

-20

-15

-10

-5

0

5

0 200 400 600 800 1000 1200
température (°C)

%
 d

ila
ta

tio
n HAP TCP

HAP sto

Density and porosity
calculation from  TMA,

Thermomechanical Analyzer



Modeling for the description of the sintering process

Typical representation of processes involved:
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Model for Sintering and Coarsening of Rows of Spherical
Particles

Literature : 
• Parhami F. et al; Mechanics of Materials – 31 pp 43-61 (1999)
• Svoboda and Riedel; Acta Mettal. Mater – Vol 43 N 1pp 1-10 (1995)
• Olevsky E; Materials Science and Engineering R23 (1998)

Goal :
Model for the formation of interparticle contacts and neck growth 
between powder particles by grain boundary and surface diffusion.

Methodology :
Model is based on a Thermodynamic Variational Principle arising from the governing
equations of mass transport on the free surface and grain boundaries

Maximization of the rate of dissipation of Gibbs free energy
(for a pair of particles through grain boundary and surface diffusion)



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

1. Porous medium is considered as a two phase material (phase of 
substance – body skleleton – and phase voids –pores)

2. The skleton is assumed to be made of individual particles having
nonlinear – viscous incompresible isotropic behavior.

3. The voids (pores) are isotropically distributed.
4. The overall response is therefore isotropic
5. The free energy F per unit mass of porous medium is by hypothesis,

a function of the absolute temperature T and of the specific volume
v. 

Second principle de la thermodynamique des milieux continus
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Phenomenological model of sintering based upon the ideas ofthermodynamics 
of irreversible processes;



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

Clausius’ inequality – Duhem with hypothesis F=F(T,v) and
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Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

The condition Is satisfied if there exists a dissipative potential D
defined as a homogeneous function of order m+1
of the strain rate ij
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For D,  cases three

1. Linear incompressible viscous material 
with voids

2. Incompressible nonlinear – viscous material
3. Nonlinear – viscous porous material



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

1. Linear viscous incompressible material with voids

dissipation potential 22

2
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Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

2. Incompressible nonlinear – viscous material

0=θ ∞→→ ψϕ and1
0→e γψ →→ Wthereforee 02

•incompressible material
•incompressible matric

2

0
γη=D•the dissipative potential of a linear – viscous fluid is

• an extension into nonlinear –viscous behavior is obtained by
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Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes;

3. Nonlinear – viscous porous material

• using a power law dependence, the dissipation of a porous material is
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• matrix incompressible, nonlinear-viscous
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(linear viscous porous material)

• constitutive law
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the equivalent stress σ and the equivalent strain rate W



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes;

)(   Wσσ =
• a generalization of the relationship, mWA   =σ between equivalent stress and equivalent strain 

rate arbitrary function of W

• in this general case, the constitutive relationship for a nonlinear –viscous        
porous material can be represented in the form (sintering under pressure):
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Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

we have 

  P e  W
(W) p       and       W
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• an important relationship between the invariants of stress – strain
rate state is:
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Model Formulation

• At hight temperature, atoms travel along the free surfaces and the interparticle
contacts to reduce the total free energy of surfaces and interfaces of the system.

ENERGY BALANCE BETWEEN SOURCES AND SINKS
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Gs : rate of change of the free energy of system

Rs : one-half of the rate of energy dissipation
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Model Formulation

Important 
unit timein length unit through diffusion by  passing material of  volume→J
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Model Formulation ……………… compatibility condition
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Model Formulation

The resulting expressions are coupled linear equations :
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Model Formulation

[ ] { } { }fk =δ&  
rates of change of the three degrees of freedom
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Numerical Procedures

• initial conditions 0     x and    bb      o === oaa

Case 1: very small value of x, instability numerical asymptotic approach

Case 2: elimination of the circular disc

a

b

2 X

L

h

Case 3:elimination of the spherical surfaces

2 X

t

• Runge Kutta



Case 1: very small values for the magnitude of x

• in the limit where x /a , x /b and t /x are much smalle than 1 and higher order
terms in                        are neglected[ ] { } { }fk =δ&  
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Of with 1/ga and 1/gb negligible is obtained :

generalization of Coble’s 
are used until :
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