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Geometry of the problem
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SINTERING

Initial point contact late stlage, tn_eCk growth
ong time

Sintering model with the development
of the particle bond during sintering

infinite time

Microstructural scale
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MACROSCOPIC DESCRIPTION

Principal mechanisms

Without shrinkage Evaporation —condensation
Superficial diffusion

*Formation of pores
*Mechanical resistance
*Chemical reactions
*Dimensional variation
contingent on temperature

With shrinkage

Principal mechanisms

> Volume diffusion
flows (viscous and plastic)




PHYSICAL CHEMISTRY ASPECT

DRIVING ENERGIES:

Surface Energy : *Surface tension y=dW /dS

Energy linked to the presence | «proximity of curved surfaces

of physical defects  : In the crystalline network, there
exists a concentration of C de lacuna
expressed as flows( thermodynamic
statistics):

ozﬁzexp(Ef/kT)

Energy linked to the « If the interface is curved, the pressure of the
presence of pressure : vapor, in equilibrium with the solid, changes
depending on the curvature of the surface




SINTERING MECHANISMS IN SOLID PHASE

1-TANGENT SPHERES 2- SECANT SPHERES

1. Evaporation —condensation
2. Superficial diffusion

3. Volume diffusion

Viscous flow

Volume diffusion
Intergranular diffusion
Microcreep

==




1.1-TANGENT SPHERES: Evaporation - condensation

 That a transfer of atoms
will be established, by the
gaseous phase from

the sphere’s surface toward

the lateral surface of the bridge.
AP>0 et AP,<0

3
X — 3727/POQ>1<( M )/2 *t
r dkT  2zRT

Q=volume atomique



1.2-TANGENT SPHERES : superficial diffusion

In proximity to the bridge’s

12 surface, there exists and
P
Q excess of lacunas; however,
> a2 "  Nearby the sphere’s surface —

AC far from the threshold—
there exists a defect of lacunas.
3 *The extra lacunas will diffuse.
o If a flux of lacunas is
established, there will be
an equivalent flux of atoms
: | in the opposite direction which
DS 7,{2 wi!l therefore gontribute to
S_S *t  build up the bridge.

7
20 X
| ) X 564
\ S 3
A i i r kT

This exchange of lacunas and atoms will only be restricted
to the superficial layer O,



1.3-TANGENT SPHERES : Volume diffusion

 Based on the presence of an
excess of lacunas neighboring the
bridge’s surface, and of a defect of
lacunas nearby the sphere surfaces
far from the bridge.

» This diffusion of lacunas (and of
atoms) 1s speculated to operate on
the volume and no longer

on the surface

XS 57Z'>1<Dv)/£2 ot
12 KT




2.1-SECANT SPHERES : Viscous flow

* The formation of a linking zone between
spheres carried out by viscous flow of
Newtonian-type material

* the displacement of atoms carried out
under the influence of a cut which i1s
proportional to the gradient of speeds

0:77%—‘,{9 n=Viscosité gz%

2 \I/N 1/n
)
r Ji




2.2-SECANT SPHERES : Volume diffusion

 Similar to those previously mentioned.
5 ( D Q)
V

X
2 \2072 T

§

 The model considered a variation of the distance between the
centers of the spheres



2.3-SECANT SPHERES : Intergranular diffusion

» The experimental observations show
that in the majority of cases, it forms
a neck within the linked zone,
being AA’.

* Les lacunas, finding themselves in excess
neighboring the concave surface of the
bridge, will be able to diffuse toward
this grain joint, instead of spreading
to surfaces with a larger radius of
curvature meaning the surfaces
of the tw/o spheres.

X—j: 96 il g
-\ KT




2.4- SECANT SPHERES : Microcreep mechanism

* Creep indicates a flow of
material occurring at a given
temperature under the influence
of a constant.

* Volume subject to the strain of
compression G,

1,1
N7




Cases:

Sintering of a homogeneus body under uniaxial loading (tension or compression

)

external load

T —
- — & 8 e« Sinter forging » overall compression
C —) — = . . . . . .
= — < £ e« Plastic flow and sintering < < uniaxial loading
= =) — @ . .
£ - :: e under the action of external | ¢ torsion
— L
— “— ° forces _
!
external load
/’

Free sintering <

» free sintering of linear — viscous porous material

« power — law creep (nonlinearity of the constitutive

L properties)




Reduction of the specific surface area

Sp (m2/g)

Evolution des

Typical evolution
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Illustration of the sintering phenomenon:

GHO-O

INITIAL STAGE INTERMEDIATE STAGES FINAL STAGE

—Ei/RT

: D
=———grado,D =D e
J| RT g i 0i

« Diffusion in gas phase (1)
« Surface diffusion (2)

 VVolume diffusion (3)




Effect of Calcination on HAp properties
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Other physical changes
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Calculation of properties during the sintering

Density and porosity
calculation from TMA,
Thermomechanical Analyzer

Force

A
to
5
O ————
<0 —HPTP
S,
'J(—d‘_ 4
5 —HP0
=2
X )
.Z) \
5 D
3) T T T T T T
0 20 40 a0 a0 100 120

tenpdaure("Q

_ Density
Shrinkage m mg-—Am
3 p=
Av—l—(il V Vg — AV
- Vo Lo % TG
Mmo(l-——)
o= 100
%dilatation
nRo%ho (1+ )3
100
TR p
Porosity: ¢ =1— ———
P theo
1400 2
-2
1200
) i 3 o
E ¥ 1100 | density © > X
> X porosity S o
X > —chri 0 °c g
= = 1000 1 shrinkage % 10 = ¢
= 8 — weight loss % < £
2 5 900 - 2 =
g o -14 ; (72}
800 -
-18
700 -
600 ‘ ‘ ‘ ‘ ‘ ‘ -22
0 200 400 600 800 1000 1200

Temperature (°C)



Modeling for the description of the sintering process

8T ] v:Kinetic of reaction
ot r? ar

. : T,t
Continious measurement of the properties: |o= MT.0
p(T,HC,(T,0)
Text ‘ Tint 300
Myap= 29 | 1200
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gJ— 200 T 1000
"é' b T 900
H=2cm % 10 1 &
. + 700
P > 100 | e TeX + 600
s ___ constant parameters 1
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M) Better description of the sintering phenomenon

Text, °C
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Model for Sintering and Coarsening of Rows of Spherical
Particles

Literature :

e Parhami F. et al; Mechanics of Materials — 31 pp 43-61 (1999)
* Svoboda and Riedel; Acta Mettal. Mater — Vol 43 N 1pp 1-10 (1995)
 Olevsky E; Materials Science and Engineering R23 (1998)

Goal :

Model for the formation of interparticle contacts and neck growth
between powder particles by grain boundary and surface diffusion.

Methodology :

Model is based on a Thermodynamic Variational Principle arising from the governing
equations of mass transport on the free surface and grain boundaries

2

Maximization of the rate of dissipation of Gibbs free energy
(for a pair of particles through grain boundary and surface diffusion)
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Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

Porous medium is considered as a two phase material (phase of
substance — body skleleton — and phase voids —pores)

The skleton is assumed to be made of individual particles having
nonlinear — viscous incompresible i1sotropic behavior.

The voids (pores) are isotropically distributed.

The overall response 1s therefore 1sotropic

The free energy F per unit mass of porous medium is by hypothesis,
a function of the absolute temperature T and of the specific volume
V.

Second principle de la thermodvnamique des milieux continus

energie libre specifique F
p(T s—e)+a § grad T>0
F=e—Ts

/

internal energy ~ internal heat rate
stress

Phenomenological model of sintering based upon the ideas ofthermodynamics
of irreversible processes;



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

Clausius’ inequality — Duhem with hypothesis F=F(T,v) and

l.}
grad T=0 o —— Cauchy stress tensor

o &gL_ ,OF . p&%() € — strain rate tensor

I I — = p—
] . E=¢ +&'
0,= f(gij) \
. . ~— but not on -I& / lc;iISts(E:ion
for a viscous material S= f(e,) (itreversible)
_ Elastic distortion
- oF (reversible)
:: o7
(0,-Fp&0 &
\ oe| Laplace pressure or sintering stress (result of the
WhETE PL:W)T collective action of local capillary stresses in a

porous material)



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

The condition ¢<) Is satisfied if there exists a dissipative potential D
defined as a homogeneous function of order m+1
of the strain rate &,gf

5 pPs5=D  and  &L=m+)D>0

i L% 0 j 58%52
ij
Vpores
total
—
1. Linear incompressible viscous material
with voids

For D, cases three—< . . . :
2. Incompressible nonlinear — viscous material

3. Nonlinear — viscous porous material
\\




Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

1. Linear viscous incompressible material with voids

deviator of the

dissipation potential D_777/ 41 (e e shrinkagerate 7 =+/8%8& ™ strain rate tensor

ij i
shear modulus of the porous

_ body skeleton octive s g Cffective bulkmodule - 8=t zé’tggjlc:—%
—(1— effective shear module
o=(1-0) > f (viscosity for example)

n=pn,  $2yn, v-HP o

the potential D can be expressed as:  D=(1-0)7] W

W \/(07/ "‘We

The constitutive law 1s:

0,=211(pgktyed )+F 5,



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

2. Incompressible nonlinear — viscous material

*incompressible material > 6=0 :>g0—)1 and —
*incompressible matric —»e—>0:> e —>0 therefore W—y

-the dissipative potential of a linear — viscous fluidis D=7y

* an extension into nonlinear —viscous behavior 1s obtained by

material parameter depends on temperature strain rate sensitivity

\

. A m-+1
“m’

» the deviatoric stress 1s obtained from

' _m_ m+1 ,
Gij‘@g%c_Ay & (&



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes;

3. Nonlinear — viscous porous material

* using a power law dependence, the dissipation of a porous material 1s
i

* matrix incompressible, nonlinear-viscous
—

%( 1-6)W m+l< Q=0 we h.ave | W=y

(incompressible nonlinear viscous

matrlx m+17/ |::> '< material)
m=l we have A=27

(linear viscous porous material)

&

o if
M— m-1
r=ApW™ y p=Ay W e+P

m-1 '
— substituting leads to the following relationship between
o, AW (pstye §ij) + PL5U_ <

the equivalent stress ¢ and the equivalent strain rate W

e constitutive law

_ oc=AW"



Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes;

« a generalization of the relationship,oc =AW" between equivalent stress and equivalent strain

ratt o=c0c (W) — arbitrary function of W

* in this general case, the constitutive relationship for a nonlinear —viscous
porous material can be represented in the form (sintering under pressure):

« basic constitutive expression for the

_oW)
%W (psty e otk o, continuum theory of sintering »

I

- influence of capillary stresses
material resistance (sintering factor)

v

externally applied . O, =0 — free sintering

stresses

e R=0 — treatement by pressure without sintering

© 0, # 0 and P #0 — sintering under pressure
N




Phenomenological model of sintering based upon the ideas of
thermodynamics of irreversible processes

we have

_o(W) _o
="y PV and p= W y e+P

 an important relationship between the invariants of stress — strain
rate state 1s:

(P-R)oyr=tye



Model Formulation

* At hight temperature, atoms travel along the free surfaces and the interparticle
contacts to reduce the total free energy of surfaces and interfaces of the system.

ENERGY BALANCE BETWEEN SOURCES AND SINKS

G, : rate of change of the free energy of system

H: l S RS R, : one-half of the rate of energy dissipation

_1 1 1 1
éﬁ:)/S,&SQ—]/b,%—FV RS_2£Dk)\i.?bdAb+2£Dsi.?SdAs

sDO . sDQ

YNV surface and grain boundary energies per unit area DS = Sk'|§ s - KT
s
As A Ab — surfaceand grain boundary areas [Sb A [55 — grain boundary and surface atom diffusivities
F — applied force ) — atomic volume
v — velocity of one end of the row of particles to the other Kk —s Boltzman's constant
Db A DS — diffusion parameters T — absolute temperature

5:) A j; — fluxes of material on the grain boundary and on the free surface

5b A 55 — thicknesses within wich diffusion occurs on the grain boundary and surfaces



Model Formulation

Important

J — volume of material passing by diffusion through unit length in unit time

(§s‘ — the rate of change of the free energy of the systemis the rate of change of the internal
energy minus the external work rate. In the system, internal energy is the sum
of surface and grain boundary energies

H — has a stationary minimum value with respect to compatible variations of J o J, A, Ab and v

The Rayleigh - Ritz minimization is achieved by setting

S[[= ¢+ R =0
B
5

. &
OI'T must be zero for variations < 2 :;g > degrees of freedom of the

5 Variational functional I1

0X




Model Formulation .................. compatibility condition

sum of the principal curvatures of the particle surface A
A=>v -sdl
A A nec
A?‘ ijdA+Zj (8 +8)dL allb
neck 1 2
JdAV
motion of the locus of point of connection i b .[
between the grain boundary and free surface
M :
rate of motion of the particle surface integral of the strees over each grain
in the outward normal direction . . boundary
Equations of conservation
V+Vs-Jd =0 —  volume conservation on A
n S
v +V - 5, =0 —  volume conservation on grain boundary

§1 : 5) 1 +S - 5) , + §b - 5; = (0 —— flux continuity at the necks requires
S S

2
YKk =YKk =—0 on L — continuity of chemical potential
s 1 s 2

J =-DyVk on A
S S S S

S

J =DVo onA
b b b b



Model Formulation

The resulting expressions are coupled linear equations :

k] 85- 1}

rates of change of the six degrees of freedom

- A S, Al |
Z& ) xa?g +121) 0 0 0 0 ZdL & 2y L
xR % , 4D %
0 2 oxtRg + 1Y 0 0 0 zbht? B -2zyh
B 4 4 A 2
. . zX zx zXt 0 K -2y a+F
8D2 8D2 8D2 I
0 0 = e = 0 B | -27%b+F
80, 80, 80,
ot at at
0 0 0, 0, 0, 0 & -27y, x+F
Lt bht? £
;szs 7[4DS ’ ’ 0 % | |27y t-27p X |

the set of variables used above are not independent, by imposing volume conservation
and geometrical constraints, [2=a2-x2 and h2=Db?-x2



Model Formulation

k] 1

)

&> rates of change of the three degrees of freedom

aZB( 'i)s+2%)bj+2egsga azLIgbh ath(4XtDs+ﬁj
‘izL—[g’jl bzhz(XtDS+2]1)b)+2b4$gb bhx{4>;[Ds+ﬁ
aLX{‘l tDﬁﬁj bh’”(4 D, 2D, tz_zxz(syfnjﬁ)
with
gaan{@(H 1—(1)ZH—L t:i{x
X a a X2 | 71
_ b X h
g, = Ln[;(1+ 1—(ETH—E

4%aL(_L_x_a ﬁ)_ZLL
x U232 ) e
4%bh(1_4_ Xb )(2)_ 2bh
X b "2 o) T e
a,b_x_x, t|_ 2
27/SX(L+h L h+X) 2y, X 7zXF
_|_3) (Zh-lh3)
3 3




Numerical Procedures

e initial conditions — a=a, b=>b, and x=0

Case 1: very small value of x, instability numerical ==> asymptotic approach

Case 2: elimination of the circular disc

a /1
« Runge Kutta < Al—»\ !
Y

Case 3:elimination of the spherical surfaces

\ t

2X




Case 1: very small values for the magnitude of x

* in the limit where x /a, x /b and t /x are much smalle than 1 and higher order
terms in [k] {&={f} are neglected

&= [4 D, g, g, +DJ(g, +gb)](2?/s — %) _ 4D, F @

tD, F

gangt2

&K= — D2y, — 1 n

g,ta?

D2yr.-n

T X3t

392
6rxia’g,

gy tb?

(D, F 1Y 2(gpep X_4(L L)
b t 2{7[ 3(a+b)+4a+b

6rx3b?g, X

Of @ with 1/g, and 1/g, negligible is obtained :

generalization of Coble’s

= 96D,

42y, —

7)

(ar

Te — time elapsed

W

)

Te

are used until :

- = (.01




Results
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Results
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